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SUMMARY 

This paper presents finite element methods for the non-stationary Euler equations of a two dimensional 
inviscid and incompressible flow. For  the time discretization, we compare numerical results obtained by 
the use of a leap-frog scheme and a semi-implicit scheme of order two. 

INTRODUCTION 

The two-dimensional non-stationary Euler equations for an inviscid and incompressible fluid 
have been used to describe large-scale atmospheric motions. Non-linear computational instability 
of finite difference schemes is the major difficulty to overcome for long-term integration of this 
equation. 

Arakawa’ pointed out that the properties of conservation of kinetic energy and mean-square 
vorticity or ‘enstrophy’ must be maintained when the continuous problem is approximated by 
a numerical scheme. 

In a previous paper,’ we showed that the use of finite-element spatial discretizations leads to 
conservative and convergent schemes as soon as the numerical integration of the non-linear term 
is exact. We gave an error analysis of finite element approximations and we derived stability 
and convergence theorems for time-differencing schemes. 

This time we present numerical results, computational aspects and comparisons in practice 
of the schemes introduced in Reference 2. In particular, non-trivial periodic solutions of the stream- 
function have been found and numerically tested during long-term integration. 

STATEMENT OF THE PROBLEM 

Let R be a simply connected plane domain with boundary r. We consider the non-stationary 
Euler equations for an incompressible and inviscid fluid: 

au 2 a U  

i = l  axi z+ 1 u i - =  -gradp, in R, 

divu=O, in a, (2) 

0271-2091/85/070637-20%02.00 
0 1985 by John Wiley & Sons, Ltd. 

Received February 1985 



638 J.-H. SAIAC 

u - v = O ,  on r, 
u(x, 0) = uo(x), in R, 

where v is the unit outward normal to I?. 
Since the flow is incompressible, there is a stream function $ satisfying 

(3) 

(4) 

Then introducing the vorticity w by 

and using the identity 
w = curl u 

curl u = - A+ 

we obtain the stream-function formulation of the Euler equations 

- A $ = o ,  in R, 

am a$ aw a+ am 
at axlax, ax,ax, - J(*, 4, in a, - ____---- ___  

$(x, t )  = 0, on r, (10) 

*(X> 0) = *o(x), in Q. (1 1) 

We now introduce function spaces in order to write these equations in variational form and 
denote to derive finite element methods. Let (.;) denote the scalar product in Lz(12) and I / .  

the norm in L2(R). Let then 

which is a Hilbert space for the norm 

Let us also consider the following semi-norm in H'(R) 

It is well known that this defines a norm in HA@), where 

Hh(R) = (UlU€H'(R), u(r = O } .  

Let a:(u, u) -+ a(u, u )  be the real bilinear form on (Hh(R)),: 

associated with the variational formulation of the harmonic Dirichlet problem, and let us consider 
b:(u, u, w) -+ b(u, u, w) defined by 

b(u, u, w) = (** ax, ax, - **)wdx. ax, ax, 
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The Euler equation can be expressed in variational form as follows: 

a(*@), u) = (ow, u), 'ducfG(Q), 

* (O)  = *o. 

We saw in Reference 2 that the form b satisfies the identity 

b(u, u, w) = b(u, w, u) = b(w, u, u), 

which leads {o the following conservation properties: 

so that the kinetic energy 

3 I *@I I L2 

/I I /  2.Q 

and the enstrophy 

are conserved with time. 

conservation of kinetic energy and enstrophy is the main condition of their convergence. 
The fact that numerical schemes keep the properties of the form b and then ensure the 

FINITE ELEMENT APPROXIMATION 

Standard conforming elements enable us to construct two finite dimensional spaces; 

uh Hi(Sz)? 
vh c H1(R). 

Then we approximate the Euler equations by the following discrete formulation: 

a($h(t) ,  uh) = (oh(t), uh),  v u h E u h ,  

Examples 

Triangular elements. For each integer k,  we denote by Pk, the space of all polynomials defined on 
58' of degree less or equal to k .  Then, for the construction of the finite dimensional spaces uh and vh, 
we use a conforming finite element method associated with a regular triangulation made with 
triangles K and, on each K ,  polynomials of Pk. 
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Figure 1 

Quudriluteral elements. In this case, we denote by I? the unit reference square with vertices 
d ,  = (O,O), dz  = (l,O), d3 = (1, I), d4 = (0, I), and we denote by F ,  the mapping that maps the 
unit square I? onto the quadrilateral element K .  Now for each integer k, we denote by Qk the 
space of all polynomials spanned by x;'x? with 0 < ai < k for i = 1,2. 

Then for the construction of the finite dimensional spaces Uh and V), we shall use a conforming 
finite element method associated with quadrilaterals K and, on each K ,  the functions obtained 
by composition with FK of polynomials of Qk. 

In both cases of triangular and quadrilateral elements we derived the following error bound 
as soon as the exact solution (+, o) is sufficiently smooth: 

l + ( t ) - $ h ( t ) l l , Q +  ~ ~ o ( ~ ) - o h ( t ) ~ ~ O , Q ~  Chk? vtf[otT1. (29) 

In particular, let us choose a regular 'triangulation' of Q made with equal rectangles, and let 
us choose as V,, the space of continuous functions on fi such as their restrictions on each rectangle 
K belong to Q 1 .  We obtain the conservative scheme introduced by Arakawa for the Jacobian 
(see also Reference 3): 

+ ~ i - l , j + l ( + i , j + l -  + i - l , j )  + m i - l , j - l ( + i - l , j - + i , j - l )  

+ mi + 1 ,  j -  1 (+i, j -  1 - + i +  1 ,  j )  

+ w i + l , j ( + i , j - l  - + i , j + l  + + i + l , j - 1  - + i + ~ , j + l )  

+ u i , j + l ( + i + l , j -  + i - l , j  + + i +  i . j + l -  + i -  l , j + i )  

+ mi- i , j ( + i , j +  1 - + i ,  j -  1 + + i -  l , j +  1 - + i -  1 . j -  1) 

+ o i , j - l ( + i - l , j -  $ i + l , j  + $ i - l , j -  1 - $ i + l . j - l ) l .  (30) 

It is also possible to consider a regular triangulation of Q made of equilateral triangles and 
to take as v h  the space of continuous functions such that their restrictions on each triangle K 
belong to P , .  There is an advantage to do so from the point of view of numerical quadrature. 
We obtain the following analogue of the Jacobian (see Figure 1): 

TIME DISCRETIZATION 

The most generally used time discretization scheme for the Euler equation is the leap-frog scheme. 
But this scheme may presents instability and explosive growth of energy and enstrophy in the case 
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of long-term integration. The importance of these properties leads us to consider numerical 
schemes satisfying the conservation of kinetic energy and enstrophy. This implies the choice of 
semi-implicit schemes. 

The leapfrog scheme 

Let us choose a positive integer N ;  let At  denote the corresponding time step At = T I N  and 
tn = nAt for n = 0,. . . , N .  Let $; and w i  denote the approximate values of $(t,) and w(tn). The leap- 
frog scheme can be written as follows: 

uh)  = (O,", uh) + Atb($,", uh), vJZ)hE vh* (35) 
We derived in Reference 2 the following stability and convergence results. Under the following 
stability hypothesis: 

(i) a Courant-Friedrichs-Lewy type condition 

where the constant C depends on the type of finite elements used and where suplui(x)( represents 

the maximum value of the velocity in 52 
X € R  

(ii) there exists a constant A > 0 such that 

we have the following bound: 

II 4 ll:,n + II mi+' ll&2 < C( I/ 0," IIi5,n + 110; II:,,), V n  = 0,. . . , N - 1. (38) 
If we assume furthermore sufficient regularity conditions on the exact solution ($, w), we can get the 
error estimate 

Id'(tn) - $ ; I I , R  + II w(tn) - 4 /Io,n < C(hk + At2), V n  = 0,. . ., N .  (39) 

Remark 1 .  Condition (37) seems rather theoretical. In fact, the constant C in (38) may become 
very large with the integration time T.  Namely 

with 
C = 2Kexp(AKT), (40) 

(41) 

Furthermore, it may be observed that the stability condition (36) does not imply the condition 
(37). Condition (37) shows itself to be more restrictive than (36). A practical way to relax this 
condition is to use a mixing between the successive steps; For example, a periodic mixing at every 
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M steps, M being adjusted to maintain conservative properties: 

Qn = 0,- 2 + 2AtJ($n- 1 ,  0,- 11, 

Qn+1+2Gn+w,-1 

Q,+ = en- + 2AtJ($,, G,), 

0, = 2 4 
or a mixing at every time step of the form 

6, = 0,- 2 + 2AtJ($n - 1 r  0,- 1 1 3  

G,+ = 0,- + 2AtJ($,, Q,), 

Q,+l + 2 Q , + 0 , - ,  
4 

0, = (1 - E)Q, + E 2 

where E is a parameter to fit in order to keep kinetic energy and enstrophy constant. 

(43) 

Remark 2. It is well known and our numerical experiments have confirmed it, that the 
non-linear term must be exactly integrated. For the L2 scalar product 

on the contrary, we can use approximate integration. Doing this, the leap-frog scheme is explicit 
and there is no linear system to solve at each time step. This is what is called 'lumping'. We 
obtain it by the use of an approximate quadrature formula involving the interpolation points. 

For example, with finite elements Qk, the formula using interpolation points is exact for 
polynomials of degree less than or equal to 2k - 1. This ensures an integration error of order 
k, that is the same order as finite element interpolation error.4 

Thus, from a theoretical point of view, there is no loss of order of accuracy when the mass 
matrix is replaced by a lumped diagonal matrix. Numerical comparisons are presented in the 
next section. Numerical tests have shown that the 'lumping' actually stabilizes the leap-frog 
scheme in the case of Euler equations. 

A semi-implicit scheme of order two 

The following scheme ensures exact conservation of enstrophy. Numerical experiments have 
shown that kinetic energy is also constant with time when the exactly integrated formulation h 
of the non-linear term (1 7) is used. 

Let $; and 0; be approximations of'$(t,) and w(t,), we write 

U h )  = U h h  v U h E u h ,  (45) 

(47) 

0: = m g , h .  (48) 

At n + 1 / 2  
v h )  = ( W i ,  o h )  + b ( $ h  > + 9 V o h E  vh, 

We call this scheme a semi-implicit scheme because it is only implicit with respect to wh. It 
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ensures the exact conservation of approximate enstrophy: 

/ /  0; / /  ;,h = / I  / /  ; ,h$ V n  = O,. * * 9 N* (49) 
This scheme appears to be a mid-point rule for $ associated with a Crank-Nicolson scheme 

For the exact solution (9, a), we have 
for w. 

(52) 
At 

- A+(trl+ l j 2 )  = 4 t n )  + 7 j - 4 $ ( t n ) ,  O ( t n ) )  + 0(At2 ) ,  

so that this scheme is clearly of order two in time. 

(Reference 2)  the following error bound: 
More precisely, suppose that the exact solution ($,w) is sufficiently smooth, we derived in 

/I 4 t n )  - w; /lo,* + I$(L) - $ill,* < C(hk + At2)  (53) 

Computational aspects of the semi-implicit scheme 

This scheme implies the resolution of two discrete Dirichlet problems at each time step. This 
has been done by factorizing the discrete Laplacian matrix once and for all using Cholesky's 
algorithm. 

The resolution of the vorticity equation (47) is more tricky. The problem can be written as 
follows: w; and $; being already calculated, find w;+' such that 

If p denotes the number of nodes of the finite element method, this leads to the following 
inversion matrix problem in Rp at each time step: 

(I - J,)cii"+' = (I + J,)O", (55 )  

I being the p x p identity matrix; J, is a skew-symmetric matrix depending on $:+112  and On is the 
vector solution for each time t,. 

This problem has a unique solution since 

((I - J,)V, V),P = / I  V / I  &, V VEIW'. (56) 

Let us now review different algorithms to solve it. 

The relaxation algorithm. Let us consider the system of linear equations 

Ax = b, 
where A = (q j )  is a given p x p real matrix and b is a given real p-vector. 
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Let xo be a given vector; the computational scheme can be written as follows, with ai,i = 1, V i :  
x;+' = w(bi - ai,lxy+l ... - ai,i.-lx;Tl) 

+(1 - w ) ~ ~ + ~ ~ ( - u ~ , ~ + , x ~ + ~ ~ ~ ~ - a , , , x ~ ) ,  for i =  1 ,..., p, 

where w is the relaxation parameter. Numerical experiments have shown that the optimal values of 
w were 

At 
h 

At 
h 

o = 0.95, for - ~ 0 . 2 ,  

w =0.90, for --0.5. 

This algorithm is very easy to implement, but the extra-diagonal coefficients of the matrix 
become more important when h decreases or when At increases. Then the relaxation algorithm 
becomes less efficient. It may even diverge when the matrix A is not diagonally dominant. The 
necessity to reduce, in this case, the time step At leads to higher computational costs. 

The generalized conjugate gradient method. This was introduced by Concus and Golub.' Let us 
consider the system of linear equations 

A x = b  

where A is a p x p real matrix and b a given real p-vector. We rewrite the system 

Mx = Nx + b, 

where M = MT = (A + AT)/2 is the symmetric part of A, and 

- N = NT =(A - AT)/2 

is its skew-symmetric part. 
Assuming that M is positive definite and that it is a simpler computational task to solve 

MZ = d, 

the generalized conjugate gradient method for the splitting (A + AT)/2 is summarized as follows: 

Algorithm 

Let xo be a given vector and arbitrarily define xk for k = 0,l 

1. Solve MZk = rk when rk = b - Axk. 

3. Compute x k f 1 = x k - ,  +wk+1(Zk+Xk-Xk-l 1 

Properties of the method in our case. 

I, and the first step of the algorithm is removed. 
Let us recall that A = I - J,, where J, is skew symmetric, so that the symmetric part of A is 

This method is then very easy to implement in this case. 



TIME-DEPENDENT EULER EQUATIONS 645 

The Chebyschev iteration. We present a short overview of the Chebyschev iteration for a 
non-symmetric matrix according to Van der Vorst.6 Let us consider the linear system 

Ax = b. 

The computational scheme can be written as follows: 

Algorithm 

Given x', define 

r' = b - Ax', 
1 

2 
G!' = 2' 

then 
Xk = xk- 1 + Pk - 
rk = b - Axk, 

pk = dak - 1, 
pk = gkrk + p k p k -  1, 

for k = 1,2,. . . , where the constant c is the focal distance and d is the centre of the ellipse that 
encloses the spectrum of A. 

In our case A = I - J, has all its eigenvalues of the form A = 1 + ip, where p is real. Then the 
ellipse enclosing the spectrum of A degenerates into a segment (1 - ic, 1 + ic) (see Figure 2). 

The bi-conjugate gradient method. This was introduced by D. A. H. J a ~ o b s . ~  This method 
extends the principle of the conjugate gradient method to non-symmetric matrices. Let us consider 
a system 

A x = b  

Figure 2 
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where A is non-symmetric. We consider 

r = b - Ax, 
?= b -  ATx, 

which leads to the following algorithm: 

Algorithm 

Given xo, calculate the initial residual 

and the initial bi-residual 

Set the first direction vector 

and the first bi-direction vector 

Then for each k = 0, I , .  . . calculate 

Calculate the new estimate 

Determine the new residual 

and the new bi-residual 

Determine the coefficient 

Xk + 1 = Xk + .kpk. 

rk+l - - r  k -akApk 

f k +  1 - -k  - r  -akATpk. 

Set the new direction vector 
pk+l=rk+l+pkPk 

and the new bi-direction 
p k + l  = fk+l  + p k p k .  

The rnultigrid method. This will be too long to present here the multigrid algorithm. It is 
described, for example, by Brandt.' 
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NUMERICAL EXPERIMENTS 

We tested the above schemes on the problems described below. Let R be the square (0, z) x (0, x).  
We solve equations (8)-(11) in SZ with various initial conditions. 

1. We first tried the following initial condition (see Figure 3): 

$o(x, y )  = sin(x)sin(2y) (C1) 
which is an eigenfunction of the Dirichlet problem in the square R. This initial condition gives 
a stationary solution. The finite element scheme satisfies the stationarity without errors for 
long integration times. The choice of either a leapfrog scheme or a semi-implicit scheme does 
not modify the numerical results in this case. 

2. Then after Arakawa and Lamb (Reference 9), and for meteorological modelling purposes, we 
chose the two initial conditions obtained by addition of eigenfunctions of the Laplace 
operator: 

(C2) 

(C3) 

$@(x, y )  = sin (x)sin ( y )  + sin (2x)sin (y),  on 51, 

$o(x, y )  = sin (2x)sin (2y) + sin (2x)sin (3y), on R 

(see Figures 4 and 5, respectively.) 

For the initial condition C2 the initial value of enstrophy is 

/ /  o 11 = 71.6. 

Figure 3. Initial condition Ci: Jl,(x, y )  =sin (x)sin(2y). Stationary solution for T = 0 to T = 100 

Figure 4. Initial condition C 2  Jlo(x, y )  = sin (x)sin ( y )  + sin (%)sin y. T = 0 
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Figure 5. Initial condition C3: $,(x, y )  = sin (2x)sin (2y)  + sin (2x)sin (3y).  T = 0 

The value of energy corresponds to 

= 17.4. 

Likewise for the initial condition C3, we have 

/ I  (3 /I ;,a = 575, 
I $ = 52.9. 

For each initial condition, we perform several computations with various values of the mesh 
size h and the time step At. We first compare the behaviours of leap-frog and semi-implicit time 
discretization schemes. 

The test is to maintain the conservation laws on kinetic energy and enstrophy as long as possible. 

Time discretization 

Leap-frog scheme. The leap-frog scheme appears often to be unstable in the case of long-term 
integration or with rough initial conditions. Its stability implies that a Courant-Friedrichs-Lewy 

Table I. Leap-frog scheme (exactly integrated) 

T = O  T = l O  T-20  

Initial condition ( C 2 )  

At = 0.05 Enstrophy 71.6 80.7 93.4 

At = 0.1 unstable 
Energy 17.7 17.6 17.8 

At = 0.02 Enstrophy 71.6 78.6 85.6 
Energy 17.4 17.4 17.2 

At = 0.05 unstable 
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type condition must be set on At. This constrains us to choose a smaller time step At when the mesh 
h is smaller, which then increases the computational cost of the leap-frog scheme. 

We tested the leap-frog scheme in the case of initial conditions (C2) and (C3) with different values 
of h. And we tried to maintain the conservation constraints and stability until the integration time 
7’ = LOO. We present the numerical results in Tables I and TI. 

Numerical tests presented in Tables I and I1 have clearly shown that lumping stabilizes the leap- 
frog scheme in the case of Euler equations. 

After lumping, we remark that in the case of smooth solutions corresponding to initial condition 
(C2), the behaviour of the leap-frog scheme is satisfactory, whereas for initial condition (C3), the 

Table 11. Leap-frog scheme (with lumping of the mass matrix) 

Initial condition ( C 2 )  

At = 0.05 Enstrophy 

At = 0.1 Enstrophy 

At = 0.2 Enstrophy 

Energy 

Energy 

Energy 

Initial condition (C2) 
n 

h=-- 
16 

At = 0.02 Enstrophy 

At = 0.05 Enstrophy 

At = 0.1 Enstrophy 

Energy 

Energy 

Energy 
Initial condition ( C 3 )  

n h=-- 
10 

At = 0.02 Enstrophy 

At = 0.05 Enstrophy 

At = 0.1 Enstrophy 

Energy 

Energy 

Energy 
n 

h=-  
16 

At = 0.02 Enstophy 

At = 0.05 Enstrophy 
Energy 

Energy 

T=O T = 5 0  T =  100 

71.6 
17.7 
71.6 
17.7 
71.6 
17.7 

71.6 
17.4 
71.6 
17.4 
71.5 
17.4 

575.4 
54.5 

575.4 
54.5 

575.4 
54.5 

575.4 
52.9 

575.4 
52.9 

71.6 
17.7 
71.6 
17.7 
91.5 
18.2 

71.6 
17.4 
71.7 
17.4 

overflow 
at T = 2 0  

580 
55.8 

597.1 
54.3 

overflow 
at T = 4 0  

601 

687 
55.7 

56.2 

71.6 
17.7 
71.8 
17.7 

overflow 
at T = 5 1  

71.6 
17.4 
71.8 
17.4 

6 16.8 
52.8 

overflow 
at T = 8 0  

overflow 
at T = 6 0  
overflow 
at T = 5 1  
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Table 111. Leap-frog with E mixing. 

71 
k=- T=O T=50 T=100 

10 

Initial condition ( C 2 )  
At = 0.2 

E = 006 Enstrophy 71.6 70.8 77.7 
Energy 11.7 17.7 17.7 

E = 0.07 Enstrophy 71.6 70.1 69.4 
Energy 17.7 17.5 17.3 

Initial condition (C3) 
At = 0.1 

E = 0.1 Enstrophy 575.4 500.4 432.3 
Energy 54.5 52 50 

E = 0.02 Enstrophy 575.4 568.5 59 1.2 
Energy 54.5 54.9 48.2 

At = 0.05 
E = 0.02 Enstrophy 575.4 569.5 554.7 

Energy 54.4 54.4 53.9 
E = 0.01 Enstrophy 575.4 573.4 575.4 

Energy 54.5 54.1 55.1 

stability condition requires very small At. In fact, in this case, we have not been able to carry 
out the computation until T = 100 even with time step At = 0.02. This is the reason why smoothing 
procedures have been tried in order to stabilize the leap-frog scheme. We have tested several 
kinds of smoothing among the most commonly used. Our conclusion is the following: the mixing 
procedures (42) and (43) can be efficient if the parameters M and E have been carefully chosen. 
The numerical results depend very sensibly on the values of M and E. For small variations of 
these parameters, the scheme may produce either too much damping or instability. 

However, the most efficient procedure, for our point of view, is the E mixing defined in (43). 
But this procedure makes necessary twice as many computations and, in some cases, it is a 
better choice to halve the time step. 

We present in Table I11 some results of computations with a mixing procedure. 

Semi-implicit scheme. Numerical experiments have confirmed the remarkable conservation 
properties of this scheme. These properties allow us to take larger time steps and then to decrease 
the computational cost of the semi-implicit scheme. Comparisons between computational times 
of leap-frog and semi-implicit schemes are presented in Table IV. They show that in the case of 
a rough initial condition and long-term integration, the semi-implicit scheme succeeded where 
the leap-frog scheme failed and that its computational cost became competitive. 

So far, the algorithm used to solve the inversion matrix problem (59, which occurs with the 
semi-implicit scheme, has been the relaxation algorithm. But computational instabilities make 
it divergent when the extra-diagonal coefficients of the matrix become dominant, for example 
when the ratio At/h increases. This sets the problem of mesh refinements. This is the reason why 
we have tested other iterative methods well-suited for solving non-symmetric systems. We 
summarize in Table V the first results of our computations. 
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Table IV. 

65 1 

initial condition ( C 2 )  

71 h=-  
10 

Leap-frog scheme 
At = 005 Enstrophy 

At = 0.1 Enstrophy 
Energy 

Energy 

Semi-implicit scheme 
At = 0 1  Enstrophy 

At = 0.2 Enstrophy 
Energy 

Energy 
71 

h=-  
16 

Leap-frog scheme 
At = 0.02 Enstrophy 

At = 0.05 Enstrophy 
Energy 

Energy 
Semi-implicit scheme 

At = 0.1 Enstrophy 
Energy 

Initial condition ( C 3 )  

7c h=-  
10 

At = 0.02 Enstrophy 
Leap-frog scheme 

Energy 
Semi-implicit scheme 

At = 0.05 Enstrophy 

At = 0.1 Enstrophy 
Energy 

Energy 
71 h=-  
16 

Leap-frog scheme 
At = 0.02 

Semi-implicit scheme 
At = 0.05 Enstrophy 

Energy 

Computer 
T = 100 time, s 

71.6 
17.7 
71.8 
17.7 

71.6 
17.7 
71.6 
17.5 

71.6 
17.4 
71.8 
17.4 

71.6 
17.4 

616.8 
52.8 

575.4 
542  

575.1 
51 

overflow 
after T = 6 0  

575 
51.4 

720 

350 

1320 

710 

3810 

1529 

4850 

3845 

2920 

1510 

8719 
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Table V. 

Average computer 
time per time 

step, s 

Relaxation, w = 0.90 5.0 
Concus and Golub G.C.C 5.2 
Chebysheff iteration 3.8 
Bi-conjugate gradient 1.0 
Multigrid method 5.5 

n 
h = -, At = 0.05 

32 
Relaxation, w = 0.90 44 

Chebyschev iteration 39 
Bi-conjugate gradient 59 
Multigrid method 43 

Concus and Golub G.C.G 51 

Computations have been performed on a VAX mini- 
computer of Digital Equipment Company 

Graphical representations and spatial discretizations 

In order to make precise the behaviour of approximate solutions, we have been led to use 
graphical representations of the stream-function 11/ at different times. These representations have 
shown two noticeable results. 

First, from a theoretical point of view, a consequence of the possibility, with the semi implicit 
scheme, to follow the stream function solution during long-term integration, has been to exhibit 
a periodic solution of Euler equations in the case of initial condition (C2)-see Figures 6-9. 

Then, from a numerical point of view, we perform computations in the case of initial condition 
(C2) with several values of the mesh size h. The study of the graphical representations of the stream 
function solutions at T = 20 for different h, shows that if for every choice of the mesh size, the shape 

Figure 6. Initial condition C2. T = 0; ‘Enstrophy’ = 71.6; ‘Energy’ = 174 
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Figure 7. Initial condition C2. T = 10; ‘Enstrophy’ = 716; ‘Energy’ = 17.4 

Figure 8. Initial condition C2. T = 20; ‘Enstrophy’ = 71.6; ‘Energy’ = 17.4 

(d 

Figure 9. Initial condition C2. T =  100; ‘Enstrophy’= 71.6; ‘Energy’ = 17.4 
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x 
Figure 10. Initial condition C2. Stream function solution at T = 20. h = -; ‘Enstrophy’ = 71.6; ‘Energy’ = 17.9 

8 

n 
Figure 11. Initial condition C2. Stream function solution at T = 20. h = -; ‘Enstrophy’ = 71.6; ‘Energy’ = 17.7 

10 

n 
Figure 12. Initial condition C2. Stream function solution at T = 20. h = -; ‘Enstrophy’ = 71.6; ‘Energy’ = 17.4 

16 

n 
Figure 13. Initial condition C2. Stream function solution at 7’ = 20. h =--; ‘Enstrophy’ = 71.6; ‘Energy’ = 17.4 

32 
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of the stream function is qualitatively maintained, the enstrophy and kinetic energy remain exactly 
constant; on the other hand, the velocity of the rotation phenomenon depends on the mesh size h. It 
seems that we have the appearance of group velocity errors in two dimensions as mentioned in the 
papers of Trefethenl’ and Bamberger et ul.” So far, owing to the non-linearity of the equations, it 
has not been possible to specify the variations of the velocity of the phenomenon with the mesh size 
h. Complementary work is to be done in that direction (see Figures 10-13). 

Further experiments 

We consider the forced non-linear box mode problem (see Reference 12, p. 34) 
We also test the above schemes on open ocean modelling equations, after Haidvogel et ~ 1 . ’ ~  

a -v2* at + E J ( * ,  V”) + *x = F(x,y,  t), 

where 

with 
+,(x,  y, t )  = sin xsin ycos(ax  + by + ct), 0 d x, y < rc, 

We choose’2 

1 1 1 
a=- b=- c = -  ~ = 0 . 2 .  

J2’ 4 2 ’  2’ 

The results are presented in Table VI. These results are very close to the corresponding results 
of Haidvogel et al.12 

Table VI. 

n 
5.93 x lo-* 5.76 x 6.23 x lo-* 

n 
j=-  d t=-  

32 64 

n 
4.69 x 3.96 x 7.81 x 

n 
j=- & -  

32 128 

Duration 2 periods 



656 J.-H. SAIAC 

CONCLUSION 

Let us recall that our purpose was to compute the stream-function and the vorticity solutions 
of the two-dimensional non-stationary Euler equation in long-term integration while keeping 
constant kinetic energy and enstrophy, as necessary in atmospheric motions model. 

The finite element associated with a semi-implicit time scheme of order two provides a reliable 
solution of that problem. This way, we have been able to follow the solution during long-term 
integration. Moreover we exhibit numerically a solution of the Euler equations which seems to 
be periodic. 

From a practical point of view, although the semi-implicit scheme may appear already 
competitive in some cases, complementary works have to be done in order to reduce its 
computation, d I cost. 
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